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[1] This study investigates the potential of predicting local precipitation over northern
Taiwan using statistical downscaling of large-scale circulation variables from global
climate models (GCMs). Historical hindcast data of 500 hPa geopotential height
(Z500) and sea level pressure (SLP) from six different GCMs, with the target
season of being that of June, July, and August (JJA), are used as predictors for
downscaling. Singular value decomposition analysis (SVDA) using observational data
reveals that the rainfall over northern Taiwan is strongly coupled with a prominent tripole
pattern of Z500 (SLP) field over the western North Pacific/East Asian coast. SVDA
using model SLP or height field and station rainfall as input also gives similar results,
indicating that most models can capture this mode of covariability. SLP and Z500 from
models are then used for local rainfall prediction based on their relationship, which is
drawn from the SVDA. For every station considered in this study, downscaled prediction
shows considerable improvement when compared with model output. In particular,
downscaling is able to correct the erroneous sign of model rainfall prediction. However, a
few models show very low skill in their downscaled precipitation. For these models,
the correlation between observed rainfall and simulated Z500 (SLP) leading SVD patterns
is found to be weak. The performance based on the average of downscaled prediction
using Z500 and SLP is also evaluated. In general, the average prediction is more stable
and skillful when compared with results based on one predictor. Overall, this study
demonstrates that useful regional climate information can be obtained from downscaling
using large-scale variables from coarse-resolution GCM products.
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1. Introduction

[2] The East Asian Summer Monsoon (EASM) region is
noted for its complex space-time rainfall variability. The
complexity of the monsoon system makes it hard to have
skillful predictions in the EASM region. General circulation
models (GCMs) have become the main tool for seasonal
prediction. Though large-scale features of atmospheric var-
iability in the tropics can be reasonably captured [see, e.g.,
Lau, 1985; Rowell, 1998], GCMs still have considerable
difficulties in faithfully simulating regional climate correla-
tions [Grotch and MacCracken, 1991; Xu, 1999]. Owing to
their relatively coarse resolution, land-sea contrast and
topography in the regional scale cannot be properly repre-
sented in global models. The difficulty in skillfully predict-
ing the EASM broad-scale climate using GCMs makes

regional climate forecast an even more challenging problem
[Sperber and Palmer, 1996; Wang et al., 1998; Sperber et
al., 2001; Kang et al., 2002].
[3] Various methods of downscaling have been developed

in order to overcome the inadequacies of GCMs in simu-
lating local climate conditions. They can be categorized into
two types. One is the method of dynamical downscaling.
High-resolution simulation is obtained using a regional
climate model, which in turn is driven by the outputs of a
coarser resolution GCM. This method has the potential of
simulating extreme events [Dı́ez et al., 2005]. However,
high-resolution simulations can be computationally expen-
sive, and a lot of storage space is required for archiving
model outputs. The other type is statistical downscaling
[Von Storch et al., 1993]. The goal is to discover a stable
relation between GCM outputs and a variable of the local
climate. This relationship is exploited in order to predict
elements of the regional climate using GCM products.
Statistical downscaling has come to be widely used because
of its lesser computational requirement.
[4] Most statistical downscaling schemes are based

on regression or similar methods [Giorgi et al., 2001;
Benestad, 2004]. Wetterhall et al. [2005] used sea level
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pressure (SLP) as a predictor and found increased skill in
predicting the seasonal mean precipitation using analogue-
based downscaling. Feddersen and Andersen [2005] also
reports skillful predictions of temperature and precipitation
by statistical downscaling.
[5] The focus of this study is the application of statistical

downscaling for regional climate prediction over Taiwan. In
particular, a downscaling scheme for predicting summer
precipitation over northern Taiwan will be developed. The
results of downscaling based on various GCM hindcast
experiment data sets will be analyzed. The outline of this
study runs as follows. Section 2 introduces the model data
used and the method of downscaling. Analyses and results
of downscaling are described in section 3. A summary and
some discussions are presented in section 4.

2. Data and Methodology

2.1. Model Experiments and Station Data

[6] In the present study, data from hindcast experiments
from six different global models with the target season of
June, July, and August (JJA) are used for statistical down-
scaling. These data sets are taken from the SMIP-type
historical forecasts with 1-month lead time, for the period
of 1983–2003, SMIP being short for the Seasonal Predic-
tion Model Intercomparison Project [Kang et al., 2004].
They were run by six operational centers, and are archived
at the Asia-Pacific Economic Cooperation Climate Center
(APCC). For the hindcast experiments run by the Central
Weather Bureau (CWB) [Liou et al., 1997], the Hydrome-
teorological Centre of Russia (HMC) [Tolstykh, 2003] and
the Main Geophysical Observatory (MGO) [Shneerov et al.,
1999], the Sea Surface Temperature (SST) used in seasonal
prediction is based on observed persistent SST anomalies.
For the Japan Meteorological Agency (JMA) [Kanamitsu et
al., 1983] and the Meteorological Research Institute
(METRI) [Baek et al., 2002], predicted SST information
is used. The National Centers for Environmental Prediction
(NCEP) [Saha et al., 2006] forecasting system is a fully
coupled model. It is noteworthy that the driving boundary
SSTA forcings used in these different models are not the
same. Therefore it is expected that part of differences
among model simulations is due to the use of different
forcings. The assumption of persistent SST anomalies in
model hindcast exercise should in general lead to larger
model bias when the forecast lead time increases. Almost all
the ENSO forecast models (both statistical and dynamical)
produce better prediction skill for tropical pacific SSTA
than simple persistent SSTAwhen the lead time is more than
one month [Barnston et al., 1999]. Compared with the two-

tier forecast systems (with either persistent or predicted
SSTA), systematic model bias in SST simulation cannot
be removed from the coupled forecast system of NCEP.
However, the one-tier coupled forecast allows local air-sea
interactions; it is not the case with the two-tier system,
which is typically run with SST as the boundary forcing. It
has been shown that the coupled atmospheric and oceanic
processes are very important in simulating the realistic SST-
rainfall relationship for the Asian-Pacific summer monsoon
region [Wang et al., 2005]. For a model driven by persistent
SSTanomalies, the anomalies do not change with time during
the integration, but climatologic SST fields change monthly.
For a 2-tier forecast model forced by predicted SSTanomalies,
monthly anomalies are used as part of boundary conditionwith
linear interpolation through time. Although the SSTanomalies
are not identical in the different models that are used to
construct the multimodel ensemble, the individual model
forecast system and strategies remain consistent during all
the hindcasts. Therefore the statistical downscaling method
developed here should still be applicable to the possible future
forecasts. Table 1 provides a summary of data sources and
model experiments. All hindcast data are interpolated on a
2.5� � 2.5� grid for analyses.
[7] During the season of summer, northern Taiwan is in the

lee side of The Central Mountains, which extends from the
north of Taiwan to the south. Abundant moisture carried by
prevalent southwesterly wind is baffled by The Central Moun-
tains from arriving northern Taiwan. Although theMeiyu front
brings a lot of precipitation to northern Taiwan in the early
summer, northern Taiwan is relatively dry in this period. On
the other hand, the tripole pattern of large-scale circulation
during the East Asian summer also affects the rainfall in
northern Taiwan [Hsu and Lin, 2007]. In the positive phase
of the tripole pattern, the southwestward shift of the Pacific
subtropical anticyclone corresponds to a below-normal rainfall
in northern Taiwan, which would make northern Taiwan drier.
Thus in order to prevent drought, the management of water
resources and the local rainfall forecasting have become an
important topic for northern Taiwan. Station data of precipi-
tation over Taiwan for the period of 1950–2006 are provided
by the CWB. In this study, six of these stations in northern
Taiwan are studied. Their locations are shown in Figure 1. In
addition, NCEP-NCAR Reanalysis fields are also used as
observational data in this study.

2.2. Choice of Predictors

[8] Statistical downscaling makes use of long-term GCM
hindcast data to derive robust relationships between obser-
vations and model outputs. The information is then used for
choosing suitable meteorological variables as predictors.

Table 1. Description of Hindcast Experiments Used in This Study

Acronyms Institution Model Resolution Data Type

CWB Central Weather Bureau (Chinese Taipei) T42 L18 SMIP/HFP
HMC Hydrometeorological Centre of

Russia (Russia)
1.12� � 1.4� L28 SMIP/HFP

JMA Japan Meteorological Agency (Japan) T63 L40 SMIP/HFP
METRI Meteorological Research Institute

(South Korea)
4� � 5� L17 SMIP/HFP

MGO Main Geophysical Observatory (Russia) T42 L14 SMIP/HFP
NCEP National Centers for Environmental

Prediction (a coupled forecast system)
(U.S.A.)

T62 L64 CMIP/HFP
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Two conditions should be satisfied in selecting the right
variable. One is that it has to be well simulated by the GCM
[Wilby et al., 1999]. The other is that there should be a
stable relation between the predictor and the predictand. For
instance, the variable with the highest correlation coefficient
with the predictand can be a good choice for a predictor
[Kang et al., 2007]. Commonly used large-scale variables
for predicting precipitation include the geopotential height
[Von Storch and Zwiers, 1999], SLP [Wetterhall et al.,
2005], geostrophic wind [Wilby et al., 1998] and wind
speed [Murphy, 1999].
[9] In addition to selecting predictors, it is also important

to determine the domain over which predictor values are
considered. The place where the correlation coefficient
between a predictand and a predictor is zero can be
considered to be the boundary of a domain [Benestad,
2004]. Another basis for the selection of a domain is that
it should be large enough to resolve the relevant large-
scale pattern and encompass corresponding observations
[Feddersen and Andersen, 2005].
[10] Based on the results of correlation analyses between

various large-scale variables and the station rainfall of
interest, 500 hPa geopotential height (Z500) and SLP are
used as predictors and the domain of analysis is chosen to
be 80�–160�E and 0�–60�N.

2.3. Statistical Downscaling Method

[11] In this study, a combination of EOF truncation and
SVDA is used to obtain stable statistical relationships
between large-scale circulation and regional precipitation.
Before downscaling is applied, the time series of large-scale
variables are reconstructed using their respective EOFs and
principal components as a means of noise filtering. Here,
the first ten leading modes for the large-scale variables are
retained. SVDA is then used to extract coupled patterns
between large-scale circulation and regional precipitation.
In SVDA, the coupled patterns mentioned above can be
expressed in the equation, which is as follows:

Zpredictor t; xð Þ ¼
Xm

i¼1

Ui xð ÞSiðtÞ

Zpredic tan d t; xð Þ ¼
Xm

i¼1

Ri xð ÞKiðtÞ

Here, m is the total number of SVD modes. The large-scale
circulation anomaly field and the observed station rainfall
anomaly fields, Zpredictor (t, x) and Zpredic tan d (t, x), are
normalized to have mean zero and standard deviation one.
Ui(x) and Ri(x) indicate the singular vector of the predictor
and of the predictand respectively in ith mode. Si(t) and Ki(t)
denote respectively the time expansion coefficient of the ith
SVD mode for large-scale predictor and predictand.
[12] Then the following downscaling transfer function

will be used.

PRj t; xð Þ ¼
Xn

i¼1

Si tð ÞRi xð Þ

Here PRj(t, x) indicates the downscaled prediction, and n is
the total number of SVD modes retained. In this study, the
leading six modes are retained. Cross-validation was carried
out to evaluate the skill of the downscaling scheme. In the
cross-validation, 1-year rainfall data are excluded from the
data set and the rainfall data of the other years are defined
into the training period. Then a prediction based on the
training period is made for the excluded year [Michaelsen,
1987]. The corresponding climatology and anomaly fields
for both predictor and predictand are also redefined at the
same time, and that will prevent the signal of forecast year
from being included in the training period. This procedure is
repeated for 21 times, thus yielding rainfall predictions for
21 years for validation. The detail of the method of
downscaling can be found by Kim et al. [2004], Feddersen
et al. [1999], Feddersen and Andersen [2005], and Kang et
al. [2004]. The same process is repeated for the hindcast
data set of each of the six models. We also consider the
results of downscaling obtained by averaging the six
downscaled outputs from all models.

3. Results

3.1. Relationship Between Regional Rainfall
and Observed Large-Scale Circulation

[13] For the purpose of obtaining a first glimpse of the
interannual variability of rainfall over northern Taiwan, an
EOF analysis for JJA precipitation is carried out. The
leading EOF pattern is given in Figure 2. This EOF mode
accounts for 86% of the total variance, and is characterized
by the same sign of rainfall anomalies at each station. As
will be shown subsequently, this dominant mode is closely
tied to the circulation over the EASM region.
[14] SVD analysis is now used to unveil any robust

modes of covariability between large-scale variables and
station rainfall. Figure 3 gives spatial patterns for the first
SVD mode using station precipitation and Z500 as input
data, and those using precipitation and SLP. For the Z500
field, a tripole can be discerned in the East Asian region,
which is characterized by a wave-like pattern with centers of
action along the East Asian coast. There is a positive center
over Taiwan, a negative center over Japan and the Korea
peninsula, and a positive anomaly is found over the Sea of
Okhotsk. The corresponding rainfall pattern shows sup-
pressed precipitation for all stations over northern Taiwan,
similar to the 1st EOF of rainfall (see Figure 2). A similar
pair of patterns is found for the leading SVD mode for
precipitation and SLP, with an obvious north-south oriented

Figure 1. Location of the six stations in northern Taiwan
considered in this study.
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Figure 2. (a) Spatial pattern of the first EOF for station precipitation in northern Taiwan during JJA, for
the period of 1951–2006. (b) The principal component of the leading EOF.

Figure 3. Leading SVD mode spatial patterns of (a) the observed station precipitation in northern
Taiwan and (b) the observed Z500 in East Asia during JJA. (c) Normalized expansion coefficients
corresponding to precipitation and Z500. The leading SVD spatial patterns of (d) the observed station
precipitation and (e) the observed SLP in East Asia during JJA. (f) Normalized expansion coefficients for
precipitation and SLP (Dotted contours represent negative values in Figures 3b and 3e. Data for the
period of 1983–2003 are used.
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tripole corresponding to the latter precipitation field. The
time series of expansion coefficients corresponding to the
leading SVD mode for precipitation and Z500, and for SLP,
are given in Figure 3c and 3f, respectively. The moderately
high correlation between the expansion coefficients sug-
gests that the rainfall and Z500 (or SLP) are coupled on
interannual timescale. Overall, the results indicate that sup-
pressed precipitation over northern Taiwan is associated
with a large-scale tripole pattern in the SLP or Z500 field,
with positive centers of action over Taiwan and also over
the Sea of Okhotsk to northeastern Eurasia, and a negative
center over Japan. In addition, the Squared Covariance
Fraction (SCF) between Z500 (or SLP) and station precip-
itation for the first SVD mode is about 90%. These results
provide a basis for choosing Z500 and SLP in predicting
station rainfall over northern Taiwan during JJA.
[15] To further elucidate the relationship between the

large-scale circulation and station rainfall corresponding to
this SVD mode, we designed composite maps of rainfall, for
SLP and 850 hPa wind. On the basis of the SVD expansion
coefficients, the years of 1984, 1986, 1990, 1997, and 2000
are selected as wet years, whereas 1988, 1993, 1995, and
2003 are selected as dry years. A dry-minus-wet composite
map is shown in Figure 4. It can be seen that, when dry
condition prevails, there is an anomalous anticyclone over a
broad region in the western Pacific, covering Taiwan. A
tripole pattern can be clearly seen in the SLP composite,
with consistent low-level circulation anomalies. Note that
the anomalous wind field is strikingly similar to that
associated with the positive phase of the dominant rainfall
pattern in the EASM region studied by Hsu and Lin [2007].

3.2. Relationship With Model Variables

[16] The relationship between station precipitation and
large-scale circulation features in models is now presented.
Figures 5 and 6 show the spatial patterns of station precipita-
tion and circulation variables associated with their leading
SVD modes for each model. It is encouraging that the model
Z500 features are consistent with those to be obtained from
observation (see Figure 5). In particular, there is a broad-scale
positive anomaly in the western Pacific, covering Taiwan, and
a negative signal is found near Japan. Accompanying these is
reduced rainfall over the northern part of Taiwan, which is in
agreement with observation. However, details of the Z500
pattern vary from one model to another. For example, the

positive signal north of Japan (see Figure 3b) is absent inHMC
and NCEP models, while it is shifted westward for JMA. The
negative center over Japan and the Korea peninsula found in
observation is located too far north in the METRI counterpart.
When compared with the observational result (see Figure 3c),
the correlation between expansion coefficients of station
precipitation and Z500 is relatively low for JMA, METRI,
and NCEP data. For CWB, HMC, and MGO, the correlation
coefficient is comparable to the case in observation (�0.6).
[17] Figure 6 gives the first SVD mode using SLP and

station precipitation from each model as input. In broad
agreement with observation, most model SLP patterns show
a positive anomaly over the western Pacific, and a negative
anomaly at 30�–40�N. However, details of the tripole
feature of the observed anomalies SLP are not well captured
in every model. For instance, a northward shift or expansion
of the negative anomaly is found in HMC and NCEP. The
negative center of action near Japan is weakened or even
absent for CWB and JMA. For the correlation between
expansion coefficients of precipitation and SLP, those from
JMA, METRI, MGO, and NCEP are relatively low, while
those from CWB and HMC are comparable to the obser-
vational value.
[18] In summary, the spatial patterns for the leading SVD

modes between large-scale variables (Z500 and SLP) and
station precipitation for most models resemble their respec-
tive observational counterpart. It can be found from the
model hindcast data sets that there is a prominent pattern of
anomalous high over western Pacific and anomalous low
over Japan associated with suppressed rainfall in northern
Taiwan. However, a number of models seem to have
difficulty in capturing the high pressure center over the
Sea of Okhotsk. It is also noteworthy that the correlation
between the expansion coefficients for the rainfall and Z500
(SLP) fields is especially low for some models runs (�0.36
compared with �0.6 in observations). In other words, the
large-scale circulation features in these GCMs seem to be
loosely coupled with station rainfall variability. As will be
seen in the next section, this weak coupling might lead to a
low skill in the downscaled rainfall prediction based on
these models.

3.3. Downscaling Prediction of Station Rainfall

[19] We now compare the results of precipitation predic-
tions based on raw model outputs and those from down-

Figure 4. Dry-minus-wet composites of (a) station precipitation (unit: mm/d), (b) observed SLP field
(contours in interval of 0.3mb), and (c) observed 850 hPa wind field (unit for scale arrow: 3m/s) during
JJA. (wet years: 1984, 1986, 1990, 1997, and 2000; dry years: 1988, 1993, 1995, and 2003).
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Figure 5. Leading SVD patterns of (a), (d), (g), (j), (m), (p) the observed station precipitation in
northern Taiwan, (b), (e), (h), (k), (n), (q) model Z500, and (c), (f), (i), (l), (o), (r) expansion coefficients
for precipitation and Z500 based on CWB (Figures 5a and 5b), HMC (Figures 5d and 5e), JMA (Figures
5g and 5h), METRI (Figures 5j and 5k), MGO (Figures 5m and 5n), NCEP (Figures 5p and 5q) hindcast
data during JJA for the period of 1983–2003.
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scaling. Figure 7 shows the temporal correlation between
model simulated precipitation and observational records for
each station location during JJA. Models’ rainfall is calcu-
lated by averaging the rainfall data of the surrounding nine

gird points for each station location. It can be seen that most
models show no skill in predicting station rainfall. The
correlation between the rainfall averaged over all stations in
northern Taiwan and that from simulation is negative for

Figure 6. Same as Figure 5, but for station precipitation and model SLP.
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every model. After the Multi-Model Ensemble (MME)
mean (i.e., simple average of outputs from all models) is
taken, the correlation coefficient for the averaged precipi-
tation of the six stations is �0.2.
[20] On the other hand, downscaled products using model

output show considerably the skill in predicting station-
scale precipitation. Figure 8 gives the correlation between
observed rainfall and downscaling prediction using Z500 as
a predictor. There is evidence of great improvement of
prediction skill. The correlation is positive between northern
Taiwan averaged precipitation and the downscaled output
for every model. In particular, predictions based on CWB,
HMC and JMA give positive correlation coefficients for
every station. As for the MME mean of downscaled outputs,
the six-station averaged value of correlation coefficients is
0.49.
[21] When we compare Figure 5 with Figure 8, it can be

seen that hindcasts from CWB, HMC and MGO give the
highest correlation between expansion coefficients of rain-
fall and model Z500 patterns for their leading SVD modes.
The downscaled predictions from these three models also
show the highest value of correlation coefficients. Thus
there is a strong association between station rainfall and the

model Z500 field. Such a strong relationship, which is
similar to that found in observation, leads to a good
prediction of local precipitation using model large-scale
variables.
[22] The correlation coefficients for downscaled outputs

using SLP as a predictor are given in Figure 9. High
correlation coefficients are found for downscaled precipita-
tion from CWB, HMC, and JMA hindcasts, and also for that
based on MME average. Again, there is relatively high
correlation between SVD expansion coefficients for precip-
itation and SLP for those models with skillful downscaling
prediction. The only exception seems to be MGO hindcasts
when SLP is used as a predictor. While the temporal
correlation is high between the expansion coefficients of
SLP and rainfall, downscaling using MGO outputs is
not particularly skillful. One possible reason for this
could be found upon closer inspection of the SLP pattern
corresponding to the first SVD mode (see Figure 6). It
shows a negative SLP anomaly over Taiwan, which is
opposed to the positive center over the same region in
observation (see Figure 3). The erroneous circulation in the
leading mode of SLP thus captured could deteriorate the
skill of downscaled prediction from this model.

Figure 7. Correlation coefficients between the observed JJA station precipitation and precipitation from
(a) CWB, (b) HMC, (c) JMA, (d) METRI, (e) MGO, (f) NCEP model, and (g) MME average of model
output. Numbers on the horizontal axes represent stations located at Tanshui, Anpu, Taipei, Chutzehu,
Ilan and Hsinchu. Correlation coefficients between the average precipitation for all stations and the
corresponding mean precipitation from models are given at the top left of each panel.
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[23] After examining the skill of downscaling based on
each predictor, the results using two predictors are shown in
Figure 10. For each model, downscaling is carried out by
using Z500 and SLP separately, and the final prediction is
the simple average of the two downscaled products. Com-
pared with prediction based on a single predictor (see
Figures 8 and 9), the prediction based on the downscaled
output involving two predictors gives a better performance
for the area-averaged precipitation. Although the anomaly
correlations are not the standard verification system for
long-range forecasts suggested by WMO, there are a con-
siderable number of studies for forecast system evaluation
that still use anomaly correlation to assess the forecast skill.
In general, the standard tercile skill score such as Gerrity
skill score is in good agreement with anomaly correlation
[Murphy, 1988].
[24] Finally, we compare the observed precipitation to

predictions based on various methods, on a year-to-year
basis. Figure 11 shows the observation, MME average of
raw model output, downscaled prediction using Z500, SLP,
and Z500 and SLP together. Note that the raw MME output
has been rescaled by the ratio of the standard deviation of
the observed precipitation to that from simulations. It is
immediately obvious that the model rainfall and the obser-
vational record tend to have the opposite sign. On the other
hand, downscaling can correct the sign of rainfall predic-
tion. For example, during 1983–1987, 1989, 1990, 1997,

1998, and 2002, downscaled results give the same sign as
the observed station precipitation, while the model output
and observation are out of phase. For the year of 1998,
downscaling successfully predicts the sign of rainfall anom-
aly, but its amplitude is too strong when compared with that
found in station data. It is possible that the model response
is overestimated in this strong La Nina year. The method of
downscaling successfully corrects the sign of prediction but
fails to correct its amplitude. Results from Figure 11 also
suggest that downscaling based on Z500 and SLP together
gives a stable and skillful prediction. Overall, our study
demonstrates that downscaled precipitation based on large-
scale variables from GCMs is useful in regional climate
prediction, which corroborates coarse-resolution forecast
products from global climate models.
[25] In observed SLP field, the large-scale tripole pattern

plays an important role for the rainfall over northern
Taiwan. The southwestward shift of the Pacific subtropical
anticyclone, that is, the positive phase of the tripole pattern
defined by Hsu and Lin [2007], prohibits moisture that
comes from the South China Sea and the western North
Pacific warm pool from transferring to Taiwan. Although
the tripole pattern cannot be well simulated by several
models, the prediction skill for northern Taiwan rainfall is
still improved after downscaling. One possible reason may
be that, from the statistic point of view, a long-term stable
relation between the simulated large-scale circulation and

Figure 8. Same as Figure 7, but for the downscaling result using model Z500 output as a predictor.
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Figure 9. Same as Figure 7, but for the downscaling result using model SLP output as a predictor.
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Figure 10. Same as Figure 7, but for the downscaling result using model SLP and Z500 output as
predictors.
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the rainfall in northern Taiwan is the main factor for
downscaling.

4. Summary and Discussion

[26] In this study, statistical downscaling based on GCM
outputs of large-scale circulation variables is used to predict

station rainfall over northern Taiwan. In particular, Z500 and
SLP from six different global models are used as predictors.
Downscaling is shown to considerably outperform global
models in predicting regional precipitation. In general,
downscaling predictions using Z500 give higher scores than
those based on SLP as a predictor. This may be due to the
inability on the part of some GCMs to represent a realistic

Figure 11. JJA precipitation, averaged over all stations (black), and the corresponding prediction based
on different prediction schemes, for the period of 1983–2003 (blue: MME model output, yellow:
downscaling prediction based on Z500, green: downscaling based on SLP, red: average of downscaling
using Z500 and SLP.). Downscaling results are obtained from averages of downscaled prediction based
on individual models. (Unit: mm/d).
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coupled pattern between SLP and station precipitation. On
the other hand, the Z500 pattern coupled to station rainfall
seems to be better captured in models. Also, it is shown that
the mean of downscaling results based Z500 and SLP gives a
more stable and skillful prediction. Overall, statistical down-
scaling can be a powerful method in extracting useful
information on local climate variation from GCM outputs.
[27] Our results also suggest that the skill of downscaling

is closely related to the following factors. (1) The ability of
GCMs in capturing the coupled pattern between predictor
and predictand: For example, for the JMA hindcast data,
SLP (which is relatively well captured) can be regarded to
be a better predictor when compared with Z500. (2) The
degree of coupling between a model predictor and the
predictand in the temporal sense: For instance, downscaling
using NCEP data gives a poor skill. This may be related to
the low correlation between the model large-scale circula-
tion pattern and station rainfall, even though the model
coupled patterns are realistic.

[28] Acknowledgments. The authors thank the Central Weather
Bureau for providing the station data of precipitation. The authors also
appreciate those institutes participating in the APCC multimodel ensemble
operational system for providing the hindcast experiment data. Also, we
thank Saji Njarackalazhikam Hameed, Ashok Karumuri, Mong-Ming Lu,
Shu-Ping Weng, and Jyh-Wen Hwu for giving valuable comments on this
study. The assistance from Doo-Young Lee, Daisuke Nohara, and Bong-
Geun Song for data analysis is also appreciated.

References
Baek, S.-K., J.-H. Ryu, and S.-B. Ryoo (2002), Analysis of the CO2 dou-
bling experiment using METRI AGCM. Part I: The characteristics of
regional and seasonal climate responses, J. Korean Meteor. Soc., 38,
465–477.

Barnston, A. G., Y. He, and M. H. Glantz (1999), Predictive skill of sta-
tistical and dynamical climate models in SST forecasts during the 1997–
98 El Niño episode and the 1998 La Niña onset, Bull. Am. Meteorol. Soc.,
80, 217 – 243, doi:10.1175/1520-0477(1999)080<0217:PSOSAD>
2.0.CO;2.

Benestad, R. E. (2004), Empirical-statistical downscaling in climate mod-
eling, Eos Trans. AGU, 85(42), 417–422, doi:10.1029/2004EO420002.

Dı́ez, E., C. Primo, J. A. Garcı́a-Moya, J. M. Gutiérrez, and B. Orfila
(2005), Statistical and dynamical downscaling of precipitation over Spain
from DEMETER seasonal forecasts, Tellus, Ser. A, 57(3), 409–423,
doi:10.1111/j.1600-0870.2005.00130.x.

Feddersen, H., and U. Andersen (2005), A method for statistical down-
scaling of seasonal ensemble predictions, Tellus, Ser. A, 57, 398–408,
doi:10.1111/j.1600-0870.2005.00102.x.

Feddersen, H., A. Navarra, and M. N. Ward (1999), Reduction of model
systematic error by statistical correction for dynamical seasonal predic-
tions, J. Clim., 12, 1974–1989, doi:10.1175/1520-0442(1999)012<1974:
ROMSEB>2.0.CO;2.

Giorgi, F., et al. (2001), Regional climate simulation-evaluation and
projections, in Climate Change 2001: The Scientific Basis, edited by J. T.
Houghton, 944 pp., Cambridge Univ. Press, New York.

Grotch, S. L., and M. MacCracken (1991), The use of general circulation
models to predict regional climate change, J. Clim., 4, 286 – 303,
doi:10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2.

Hsu, H.-H., and S.-M. Lin (2007), Asymmetry of the tripole rainfall pattern
during the East Asian summer, J. Clim., 20, 4443–4458, doi:10.1175/
JCLI4246.1.

Kanamitsu, M., K. Tada, T. Kudo, N. Sata, and S. Isa (1983), Description of
the JMA operational spectral model, J. Meteorol. Soc. Jpn., 61, 812–827.

Kang, I.-S., et al. (2002), Intercomparison of the climatological variations
of Asian summer monsoon precipitation simulated by 10 GCMs, Clim.
Dyn., 19, 383–395, doi:10.1007/s00382-002-0245-9.

Kang, I.-S., J.-Y. Lee, and C.-K. Park (2004), Potential predictability of
summer mean precipitation in a dynamical seasonal prediction system
with systematic error correction, J. Clim., 17, 834–844, doi:10.1175/
1520-0442(2004)017<0834:PPOSMP>2.0.CO;2.

Kang, H., K.-H. An, C.-K. Park, A. L. S. Solis, and K. S. (2007), Multi-
model output statistical downscaling prediction of precipitation in

the Philippines and Thailand, Geophys. Res. Lett., 34, L15710,
doi:10.1029/2007GL030730.

Kim, M.-K., I.-S. Kang, C.-K. Park, and K.-M. Kim (2004), Superensemble
prediction of regional precipitation over Korea, Int. J. Climatol., 24,
777–790, doi:10.1002/joc.1029.

Lau, N.-C. (1985), Modeling the seasonal dependence of the atmospheric
response to observed El-Nino in 1962–76,Mon.Weather Rev., 113, 1970–
1996, doi:10.1175/1520-0493(1985)113<1970:MTSDOT>2.0.CO;2.

Liou, C.-S., J.-H. Chen, C.-T. Terng, F.-J. Wang, C.-T. Fong, T. E.
Rosmond, H.-C. Kuo, C.-H. Shiao, and M.-D. Cheng (1997), The sec-
ond-generation global forecast system at the central weather bureau in
Taiwan, Weather Forecasting, 3, 653–663.

Michaelsen, J. (1987), Cross-validation in statistical climate forecast mod-
els, J. Clim. Appl. Meteorol., 26, 1589–1600.

Murphy, A. H. (1988), Skill scores based on the mean square error and their
relationships to the correlation coefficient,Mon. Weather Rev., 116, 2417–
2424, doi:10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

Murphy, J. (1999), An evaluation of statistical and dynamical techniques
for downscaling local climate, J. Clim., 12, 2248–2256, doi:10.1175/
1520-0442(1999)012<2256:AEOSAD>2.0.CO;2.

Rowell, D. P. (1998), Assessing potential seasonal predictability with an
ensemble of multidecadal GCM simulations, J. Clim., 11, 109–120,
doi:10.1175/1520-0442(1998)011<0109:APSPWA>2.0.CO;2.

Saha, S., et al. (2006), The NCEP climate forecast system, J. Clim., 19,
3483–3517, doi:10.1175/JCLI3812.1.

Shneerov, B. E., V. P. Meleshko, A. P. Solokov, D. A. Sheynin, V. A.
Lyubanskaya, P. V. Sporyshev, V. A. Matyugin, V. M. Katzov, V. A.
Govorkove, and T. V. Pavlova (1999), Global MGO model for atmo-
spheric general circulation and upper oceanic layer, Trudy MGO, 554,
1–123 (in Russian).

Sperber, K. R., and T. N. Palmer (1996), Interannual tropical rainfall varia-
bility in general circulation model simulations associated with the Atmo-
sphere Model Intercomparison Project, J. Clim., 9, 2727 – 2750,
doi:10.1175/1520-0442(1996)009<2727:ITRVIG>2.0.CO;2.

Sperber, K. R., et al. (2001), Dynamical seasonal predictability of the Asian
summer monsoon, Mon. Weather Rev., 129, 2226–2247, doi:10.1175/
1520-0493(2001)129<2226:DSPOTA>2.0.CO;2.

Tolstykh, M. A. (2003), Variable resolution version of the SL-AV global
NWP model, Russ. J. Num. An. & Math. Mod, 18, 347–361.

Von Storch, H., and F. W. Zwiers (1999). Statistical Analysis in Climate
Research, 484 pp., Cambridge Univ. Press, New York.

Von Storch, H., E. Zorita, and E. Cubasch (1993), Downscaling of global
climate estimates to regional scales: An application to the Iberian rainfall
in wintertime, J. Clim., 6, 1161 – 1171, doi:10.1175/1520-0442
(1993)006<1161:DOGCCE>2.0.CO;2.

Wang, W.-C., H.-H. Hsu, W.-S. Kau, X.-Z. Liang, LinHo, C.-T. Chen, A. N.
Samel, C.-H. Tsou, P.-H. Lin, and K.-C. Ko (1998), GCM simulations of
the East Asia climate, in Proc. Third East Asia-West Pacific Meteorol.
Clim. Conf., edited by C.-P. Chang, pp. 473 – 482, World Sci.,
Hackensack, N. J., 562 pp.

Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-
Reyes (2005), Fundamental challenge in simulation and prediction
of summer monsoon rainfall, Geophys. Res. Lett., 32, L15711,
doi:10.1029/2005GL022734.

Wetterhall, F., S. Halldin, and C.-Y. Xu (2005), Statistical precipitation
downscaling in central Sweden with the Analogue Method, J. Hydrol.,
306, 174–190, doi:10.1016/j.jhydrol.2004.09.008.

Wilby, R. L., T. M. L. Wigley, D. Conway, P. H. Jones, B. C. Hewitson,
J. Main, and D. S. Wilks (1998), Statistical downscaling of general
circulation model output: A comparison of methods, Water Resour.
Res., 34, 2995–3008, doi:10.1029/98WR02577.

Wilby, R. L., L. E. Hay, and G. H. Leavesley (1999), A comparison of
downscaled and raw GCM output: Implications for climate change sce-
narios in the San Juan River Basin, Colorado, J. Hydrol., 225, 67–91,
doi:10.1016/S0022-1694(99)00136-5.

Xu, C.-Y. (1999), From GCMs to river flow: A review of downscaling
methods and hydrologic modeling approaches, Prog. Phys. Geogr., 23,
229–249.

�����������������������
C.-T. Chen and J.-L. Chu, Department of Earth Sciences, National

Taiwan Normal University, No.88, Sec. 4, Tingzhou Road, Wenshan
District, Taipei 116, Taiwan. (jlchu@rain.geos.ntnu.edu.tw)
H. Kang, C.-K. Park, and C.-Y. Tam, Science Division, APEC Climate

Center (APCC), National Pension Corporation, Busan Bldg., Yeonsa 2-dong,
Yeonje-gu, Busan 611-705, South Korea.

D12118 CHU ET AL.: DOWNSCALING FOR TAIWAN PRECIPITATION

13 of 13

D12118


